# Exercise 2.5.2

Consider u(x, y) satisfying Laplace's equation inside a rectangle (0 < x < L, 0 < y < H) subject to the boundary conditions

$$\begin{aligned} &\frac{\partial u}{\partial x}(0,y) = 0, \qquad \quad \frac{\partial u}{\partial y}(x,0) = 0\\ &\frac{\partial u}{\partial x}(L,y) = 0, \qquad \quad \frac{\partial u}{\partial y}(x,H) = f(x). \end{aligned}$$

- (a) Without solving this problem, briefly explain the physical condition under which there is a solution to this problem.
- (b) Solve this problem by the method of separation of variables. Show that the method works only under the condition of part (a). [*Hint*: You may use (2.5.16) without derivation.]
- (c) The solution [part (b)] has an arbitrary constant. Determine it by consideration of the time-dependent heat equation (1.5.11) subject to the initial condition

$$u(x, y, 0) = g(x, y).$$

## Solution

#### Part (a)

The Laplace equation is

$$\nabla^2 u = 0$$

Integrate both sides over the area A of the rectangle in the xy-plane.

$$\iint_{A} \nabla^{2} u \, dA = 0$$
$$\iint_{A} \nabla \cdot \nabla u \, dA = 0$$

Apply Green's theorem (essentially the divergence theorem in two dimensions) to turn this area integral into a counterclockwise line integral over the area's boundary.

$$\oint_{\text{bdy }A} \nabla u \cdot \mathbf{n} \, dr = 0$$

Here  $\mathbf{n}$  represents a unit vector normal to the integration path. Since the domain is a rectangle, the closed loop integral is the sum of four integrals—one over each line segment.

$$\int_{L_1} \nabla u \cdot \mathbf{n} \, dr + \int_{L_2} \nabla u \cdot \mathbf{n} \, dr + \int_{L_3} \nabla u \cdot \mathbf{n} \, dr + \int_{L_4} \nabla u \cdot \mathbf{n} \, dr = 0$$



$$\int_0^L \frac{\partial u}{\partial y}(x,0) \, dx + \int_0^H \frac{\partial u}{\partial x}(L,y) \, dy + \int_L^0 \frac{\partial u}{\partial y}(x,H) \, dx + \int_H^0 \frac{\partial u}{\partial x}(0,y) \, dy = 0$$

Substitute each of the boundary conditions.

$$\int_0^L (0) \, dx + \int_0^H (0) \, dy + \int_L^0 f(x) \, dx + \int_H^0 (0) \, dy = 0$$
$$-\int_0^L f(x) \, dx = 0$$

Therefore, the solvability condition for this problem is

$$\int_0^L f(x) \, dx = 0.$$

This implies that for there to be a solution, no net heat can enter at the y = H edge of the rectangle. Each of the other edges is insulated, so if the solvability condition is not satisfied, the temperature u in the area will diverge.

## Part (b)

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form u(x, y) = X(x)Y(y) and substitute it into the PDE

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \rightarrow \quad \frac{\partial^2}{\partial x^2} [X(x)Y(y)] + \frac{\partial^2}{\partial y^2} [X(x)Y(y)] = 0$$

and the homogeneous boundary conditions.

$$\begin{array}{ll} \frac{\partial u}{\partial x}(0,y) = 0 & \rightarrow & X'(0)Y(y) = 0 & \rightarrow & X'(0) = 0 \\ \frac{\partial u}{\partial x}(L,y) = 0 & \rightarrow & X'(L)Y(y) = 0 & \rightarrow & X'(L) = 0 \\ \frac{\partial u}{\partial y}(x,0) = 0 & \rightarrow & X(x)Y'(0) = 0 & \rightarrow & Y'(0) = 0 \end{array}$$

Separate variables in the PDE.

$$Y\frac{d^2X}{dx^2} + X\frac{d^2Y}{dy^2} = 0$$

Divide both sides by X(x)Y(y).

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2} = 0$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$\underbrace{\frac{1}{X}\frac{d^2X}{dx^2}}_{\text{function of }x} = \underbrace{-\frac{1}{Y}\frac{d^2Y}{dy^2}}_{\text{function of }y}$$

The only way a function of x can be equal to a function of y is if both are equal to a constant  $\lambda$ .

$$\frac{1}{X}\frac{d^2X}{dx^2} = -\frac{1}{Y}\frac{d^2Y}{dy^2} = \lambda$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs—one in x and one in y.

$$\frac{1}{X}\frac{d^{2}X}{dx^{2}} = \lambda$$
$$-\frac{1}{Y}\frac{d^{2}Y}{dy^{2}} = \lambda$$

Values of  $\lambda$  for which nontrivial solutions of these equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since there are two boundary conditions for it. Suppose first that  $\lambda$  is positive:  $\lambda = \alpha^2$ . The ODE for X becomes

$$X'' = \alpha^2 X.$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$X(x) = C_1 \cosh \alpha x + C_2 \sinh \alpha x$$

Take a derivative of it.

 $X'(x) = \alpha(C_1 \sinh \alpha x + C_2 \cosh \alpha x)$ 

Apply the boundary conditions to determine  $C_1$  and  $C_2$ .

$$X'(0) = \alpha(C_2) = 0$$
  
$$X'(L) = \alpha(C_1 \sinh \alpha L + C_2 \cosh \alpha L) = 0$$

The first equation implies that  $C_2$ , so the second one reduces to  $C_1 \alpha \sinh \alpha L = 0$ . No nonzero value of  $\alpha$  satisfies this equation, so  $C_1$  must be zero. The trivial solution is obtained, so there are no positive eigenvalues. Suppose secondly that  $\lambda$  is zero:  $\lambda = 0$ . The ODE for X becomes

$$X'' = 0.$$

Integrate both sides with respect to x.

 $X' = C_3$ 

Apply the boundary conditions to determine  $C_3$ .

$$X'(0) = C_3 = 0$$
  
 $X'(L) = C_3 = 0$ 

Consequently,

Integrate both sides with respect to x once more.

 $X(x) = C_4$ 

X' = 0.

Because X(x) is nonzero, zero is an eigenvalue; the eigenfunction associated with it is  $X_0(x) = 1$ . With this value for  $\lambda$ , solve the ODE for Y.

Y'' = 0

Integrate both sides with respect to y.

 $Y' = C_5$ 

Apply the boundary condition to determine one of the constants.

$$Y'(0) = C_5 = 0$$

Y' = 0

So then

Integrate both sides with respect to y once more.

 $Y(y) = C_6$ 

Suppose thirdly that  $\lambda$  is negative:  $\lambda = -\beta^2$ . The ODE for X becomes

 $X'' = -\beta^2 X.$ 

The general solution is written in terms of sine and cosine.

 $X(x) = C_7 \cos \beta x + C_8 \sin \beta x$ 

Take a derivative of it.

 $X'(x) = \beta(-C_7 \sin \beta x + C_8 \cos \beta x)$ 

Apply the boundary conditions to determine  $C_7$  and  $C_8$ .

$$X'(0) = \beta(C_8) = 0$$
  
$$X'(L) = \beta(-C_7 \sin \beta L + C_8 \cos \beta L) = 0$$

The first equation implies that  $C_8 = 0$ , so the second one reduces to  $-C_7\beta\sin\beta L = 0$ . To avoid getting the trivial solution, we insist that  $C_7 \neq 0$ . Then

$$-\beta \sin \beta L = 0$$
  

$$\sin \beta L = 0$$
  

$$\beta L = n\pi, \quad n = 1, 2, \dots$$
  

$$\beta_n = \frac{n\pi}{L}.$$

There are negative eigenvalues  $\lambda = -n^2 \pi^2/L^2$ , and the eigenfunctions associated with them are

$$X(x) = C_7 \cos \beta x + C_8 \sin \beta x$$
$$= C_7 \cos \beta x \quad \rightarrow \quad X_n(x) = \cos \frac{n\pi x}{L}$$

With this formula for  $\lambda$ , solve the ODE for Y now.

$$\frac{d^2Y}{dy^2} = \frac{n^2\pi^2}{L^2}Y$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$Y(y) = C_9 \cosh \frac{n\pi y}{L} + C_{10} \sinh \frac{n\pi y}{L}$$

Take a derivative of it.

$$Y'(y) = \frac{n\pi}{L} \left( C_9 \sinh \frac{n\pi y}{L} + C_{10} \cosh \frac{n\pi y}{L} \right)$$

Use the boundary condition to determine one of the constants.

$$Y'(0) = \frac{n\pi}{L}(C_{10}) = 0 \quad \to \quad C_{10} = 0$$

So then

$$Y(y) = C_9 \cosh \frac{n\pi y}{L} \quad \rightarrow \quad Y_n(y) = \cosh \frac{n\pi y}{L}.$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of X(x)Y(y) over all the eigenvalues.

$$u(x,y) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} \cosh \frac{n\pi y}{L}$$

Use the final inhomogeneous boundary condition  $\frac{\partial u}{\partial y}(x, H) = f(x)$  to determine  $A_n$ . Take a derivative of the solution with respect to y.

$$\frac{\partial u}{\partial y} = \sum_{n=1}^{\infty} A_n \frac{n\pi}{L} \cos \frac{n\pi x}{L} \sinh \frac{n\pi y}{L}$$

Apply the boundary condition.

$$\frac{\partial u}{\partial y}(x,H) = \sum_{n=1}^{\infty} A_n \frac{n\pi}{L} \sinh \frac{n\pi H}{L} \cos \frac{n\pi x}{L} = f(x)$$

Multiply both sides by  $\cos(m\pi x/L)$ , where m is an integer,

$$\sum_{n=1}^{\infty} A_n \frac{n\pi}{L} \sinh \frac{n\pi H}{L} \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} = f(x) \cos \frac{m\pi x}{L}$$

and then integrate both sides with respect to x from 0 to L.

$$\int_0^L \sum_{n=1}^\infty A_n \frac{n\pi}{L} \sinh \frac{n\pi H}{L} \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} dx = \int_0^L f(x) \cos \frac{m\pi x}{L} dx$$

Bring the constants in front of the integral on the left.

$$\sum_{n=1}^{\infty} A_n \frac{n\pi}{L} \sinh \frac{n\pi H}{L} \int_0^L \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} \, dx = \int_0^L f(x) \cos \frac{m\pi x}{L} \, dx$$

Because the cosine functions are orthogonal, the integral on the left is zero if  $n \neq m$ . As a result, every term in the infinite series vanishes except for the n = m one.

$$A_n \frac{n\pi}{L} \sinh \frac{n\pi H}{L} \int_0^L \cos^2 \frac{n\pi x}{L} \, dx = \int_0^L f(x) \cos \frac{n\pi x}{L} \, dx$$
$$A_n \frac{n\pi}{L} \sinh \frac{n\pi H}{L} \left(\frac{L}{2}\right) = \int_0^L f(x) \cos \frac{n\pi x}{L} \, dx$$

Therefore,

$$A_n = \frac{2}{n\pi\sinh\frac{n\pi H}{L}} \int_0^L f(x)\cos\frac{n\pi x}{L} \, dx$$

and  $A_0$  remains arbitrary.

## Part (c)

 $A_0$  can be determined by considering the corresponding time-dependent problem with an initial condition.

$$\begin{split} &\frac{\partial u}{\partial t} = k \nabla^2 u, \quad 0 < x < L, \; 0 < y < H, \; t > 0 \\ &\frac{\partial u}{\partial x}(0, y) = 0 \\ &\frac{\partial u}{\partial x}(L, y) = 0 \\ &\frac{\partial u}{\partial y}(x, 0) = 0 \\ &\frac{\partial u}{\partial y}(x, H) = f(x) \\ &u(x, y, 0) = g(x, y) \end{split}$$

Integrate both sides of the PDE over the area A of the rectangle.

$$\iint\limits_A \frac{\partial u}{\partial t} \, dA = \iint\limits_A k \nabla^2 u \, dA$$

Bring the time derivative in front of the integral on the left. It becomes a total derivative, as the double integral wipes out the x and y variables. Apply Green's theorem to the double integral on the right.

$$\frac{d}{dt} \iint_{A} u(x, y, t) \, dA = k \iint_{A} \nabla \cdot \nabla u \, dA$$
$$= k \oint_{\text{bdy } A} \nabla u \cdot \mathbf{n} \, dr$$

$$\begin{aligned} \frac{d}{dt} \iint\limits_{A} u(x, y, t) \, dA &= k \left[ \int_{0}^{L} \frac{\partial u}{\partial y}(x, 0) \, dx + \int_{0}^{H} \frac{\partial u}{\partial x}(L, y) \, dy + \int_{L}^{0} \frac{\partial u}{\partial y}(x, H) \, dx + \int_{H}^{0} \frac{\partial u}{\partial x}(0, y) \, dy \right] \\ &= k \left[ \int_{0}^{L} (0) \, dx + \int_{0}^{H} (0) \, dy + \int_{L}^{0} f(x) \, dx + \int_{H}^{0} (0) \, dy \right] \\ &= -k \int_{0}^{L} f(x) \, dx \end{aligned}$$

For there to be an equilibrium temperature distribution, the right side must be zero (the solvability condition).

$$\frac{d}{dt}\iint\limits_{A} u(x, y, t) \, dA = 0$$

Integrate both sides with respect to t.

$$\iint\limits_A u(x,y,t) \, dA = \text{constant}$$

The double integral on the left is the same regardless of what time is chosen.

$$\iint\limits_{A} u(x, y, 0) \, dA = \iint\limits_{A} u(x, y, \infty) \, dA$$

$$\int_{0}^{H} \int_{0}^{L} g(x,y) \, dx \, dy = \int_{0}^{H} \int_{0}^{L} \left( A_{0} + \sum_{n=1}^{\infty} A_{n} \cos \frac{n\pi x}{L} \cosh \frac{n\pi y}{L} \right) dx \, dy$$
$$= \int_{0}^{H} \int_{0}^{L} A_{0} \, dx \, dy + \int_{0}^{H} \int_{0}^{L} \sum_{n=1}^{\infty} A_{n} \cos \frac{n\pi x}{L} \cosh \frac{n\pi y}{L} \, dx \, dy$$
$$= \int_{0}^{H} \int_{0}^{L} A_{0} \, dx \, dy + \sum_{n=1}^{\infty} A_{n} \underbrace{\left( \int_{0}^{L} \cos \frac{n\pi x}{L} \, dx \right)}_{=0} \left( \int_{0}^{H} \cosh \frac{n\pi y}{L} \, dy \right)$$
$$\int_{0}^{H} \int_{0}^{L} g(x, y) \, dx \, dy = A_{0}(HL)$$

Therefore,

$$A_{0} = \frac{1}{HL} \int_{0}^{H} \int_{0}^{L} g(x, y) \, dx \, dy.$$

 $A_0$  is the average of the initial temperature distribution over the area.