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Exercise 2.5.2

Consider u(z,y) satisfying Laplace’s equation inside a rectangle (0 < x < L, 0 < y < H) subject
to the boundary conditions

ou ou
ou ou

(a) Without solving this problem, briefly explain the physical condition under which there is a
solution to this problem.

(b) Solve this problem by the method of separation of variables. Show that the method works
only under the condition of part (a). [Hint: You may use (2.5.16) without derivation.]

(c) The solution [part (b)] has an arbitrary constant. Determine it by consideration of the
time-dependent heat equation (1.5.11) subject to the initial condition

U(l‘,y,O) = g(x7y)

Solution

Part (a)

The Laplace equation is
V2u = 0.
Integrate both sides over the area A of the rectangle in the xy-plane.

//v%m:o

A

/V-VudA:O
A

Apply Green’s theorem (essentially the divergence theorem in two dimensions) to turn this area
integral into a counterclockwise line integral over the area’s boundary.

§£ Vu-ndr=0

bdy A

Here n represents a unit vector normal to the integration path. Since the domain is a rectangle,
the closed loop integral is the sum of four integrals—one over each line segment.

/Vu-ndr+/Vu-ndr+/Vu-ndr+/Vu-ndr:O
Ll L2 L3 L4
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Substitute each of the boundary conditions.

/OL(o)dx+/OH(o)dy+/L0f(x)dx+/;(o)dy:0

—/OLf(x)dx:0

Therefore, the solvability condition for this problem is

/OLf(x)dx:O.

This implies that for there to be a solution, no net heat can enter at the y = H edge of the
rectangle. Each of the other edges is insulated, so if the solvability condition is not satisfied, the
temperature u in the area will diverge.

Part (b)
Because Laplace’s equation and all but one of the boundary conditions are linear and

homogeneous, the method of separation of variables can be applied. Assume a product solution of
the form u(x,y) = X(2)Y (y) and substitute it into the PDE

0*u  0%u 0? 0?
902 o 0 52 XK@Y ()] + Tyg[X(x)Y(y)] =0
and the homogeneous boundary conditions.
au / /
%(O,y) =0 — X'0)Y(y)=0 — X'(0)=0
8“ / /
%(L,y) =0 — X' (L)Y (y)=0 — X(L)=0
ou , ,
8—y(x,0):0 — X(x)Y'(0)=0 — Y'(0)=0
Separate variables in the PDE.
JEX Y
dx? dy?
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Divide both sides by X (z)Y (y).
1£X+1¥Y_
X de?2 Y dy?
Bring the second term to the right side. (Note that the final answer will be the same regardless of
which side the minus sign is on.)

0

1d°X  1d%
X dz?2 Y dy?
N——

function of z  fynction of y
The only way a function of z can be equal to a function of y is if both are equal to a constant .
1d°X 14y
X de?2 Y dy?
As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in z and one in y.
1 d?°X
— 2
X dx?
1d?Y
Y dy?
Values of A\ for which nontrivial solutions of these equations exist are called the eigenvalues, and
the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since
there are two boundary conditions for it. Suppose first that \ is positive: A = o2. The ODE for
X becomes
X" =a*X

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.
X (x) = C1 cosh ax + Cysinh ax

Take a derivative of it.
X'(z) = a(C} sinh ax + Oy cosh ax)

Apply the boundary conditions to determine C and Cos.
X’(O) = 04(02) =0
X'(L) = a(Cy sinh oL + CycoshaL) =0

The first equation implies that Cs, so the second one reduces to Ciasinh aL = 0. No nonzero
value of « satisfies this equation, so C; must be zero. The trivial solution is obtained, so there are
no positive eigenvalues. Suppose secondly that A is zero: A = 0. The ODE for X becomes

X" =0.

Integrate both sides with respect to z.
X' =C;

Apply the boundary conditions to determine Cj.
X'(0)=C3=0
X(L)=C3=0
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Consequently,
X' =0.

Integrate both sides with respect to x once more.
X(x)=Cy

Because X (z) is nonzero, zero is an eigenvalue; the eigenfunction associated with it is Xo(z) = 1.
With this value for A, solve the ODE for Y.

Y"=0
Integrate both sides with respect to y.
Y' =Cs
Apply the boundary condition to determine one of the constants.
Y'(0)=C5=0
So then
Y' =0.

Integrate both sides with respect to y once more.
Y(y) =Cs
Suppose thirdly that A is negative: A = —32. The ODE for X becomes
X" = —5%X.
The general solution is written in terms of sine and cosine.
X (x) = Crcos fx + Cgsin fx

Take a derivative of it.
X'(x) = B(—C7sin Bx + Cg cos Bx)
Apply the boundary conditions to determine C7 and Cs.
X'(0) = B(Cs) =0
X'(L) = B(=C7sin BL + Cg cos BL) = 0

The first equation implies that Cs = 0, so the second one reduces to —C78sin BL = 0. To avoid
getting the trivial solution, we insist that C7 # 0. Then

—Bsin L =0
sin 8L =0
BL=nm, n=12,...
nm
Bn = f
There are negative eigenvalues A = —n?m?/L?, and the eigenfunctions associated with them are

X (x) = Crcos fx + Cgsin fx

=Crcosffxr  — Xn(:c)zcos?.
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With this formula for A, solve the ODE for Y now.
d’y B n?n?
dy? L2
The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

Y (y) = Cy cosh % + Cyo sinh %

Take a derivative of it.
Y/(y) (CQ Slnh L —|— Cp cosh T)

Use the boundary condition to determlne one of the constants.
Y/(O) = %(010) =0 — ClO =0

So then nr .
Y (y) = Cy cosh —Ly —  Yu(y) = cosh Ty

According to the principle of superposition, the general solution to the PDE for u is a linear
combination of X (z)Y (y) over all the eigenvalues.

nmx nmy
u(x,y) = A0+ZA cosTcosh 7

n=1

Use the final inhomogeneous boundary condition g—;(:c, H) = f(z) to determine A,,. Take a

derivative of the solution with respect to y.

@_iA nm nrr .o Y
= n g €08 - sin 7

Apply the boundary condition.

ou nmw nrH nwT
—(z,H) = E A, — sinh — =
oy (@, H) L Sl L cos L f(z)

n=1

Multiply both sides by cos(mmax /L), where m is an integer,

nmH nmx mnT mnx
ZA —smh 7 oS ——cos — = f(x) cos

and then integrate both sides with respect to x from 0 to L.

L & nrt . . ntH nmwT mmnx L mmx
Z A, — sinh cos cos dx = f(z) cos dx
0 n=t L L 0 L

Bring the constants in front of the integral on the left.

nwH L L
Z A smh T /0 cos ? cos m;rx dzx = /0 f(z) cos mzra; dx
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Because the cosine functions are orthogonal, the integral on the left is zero if n # m. As a result,
every term in the infinite series vanishes except for the n = m one.

H L L
An% sinh nz /0 cos? ? dx = /0 f(z) cos nizat dx

( )= [ e

nnx

A, = ) cos —— dx
nm sinh 224 ”’TH / J

A — smh

Therefore,

and Ap remains arbitrary.
Part (c)

Ap can be determined by considering the corresponding time-dependent problem with an initial
condition.

‘?;::kv?u, 0<z<L 0<y<H, t>0
ou
ou
ou
ou

u(x7y’0) = g(a:,y)

Integrate both sides of the PDE over the area A of the rectangle.

/ audA://k:VQudA
a1
A A

Bring the time derivative in front of the integral on the left. It becomes a total derivative, as the
double integral wipes out the x and y variables. Apply Green’s theorem to the double integral on

the right.
d
dt//u(ac,y,t)dA— k/ V-:VudA
A A

=k §1§ Vu-ndr
bdy A
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ou
// u(z,y,t)dA = k[/ 7 dex—i—/ p Lydy—i—/8 dea:—l—/ 8x(O,y)dy]

_k[/o()dx+/o dy+/f dx—i—/()dy]
:—k:/OLf(a:)dm

For there to be an equilibrium temperature distribution, the right side must be zero (the
solvability condition).
d
— Y, 1) dA =0
o Ry
A

Integrate both sides with respect to t.

// u(x,y,t) dA = constant
A

The double integral on the left is the same regardless of what time is chosen.

/A/u(x,y,()) QA = /A/u(x,y,oo A

H L
/ / g(z,y)dedy = Ag(HL)
0 0
1 H L
AOZHL/O /0 9($ay)d$dy-

Ap is the average of the initial temperature distribution over the area.

Therefore,
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